This is a post-peer-review, pre-copyedit version of an article published in Computers & Graphics. The final authenticated version is
available online at: https://doi.org/10.1016/j.cag.2015.02.005

© 2015. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

A modular software architecture for processing of big geospatial data in the cloud

Michel Krimer®®, Ivo Senner?

4 Fraunhofer Institute for Computer Graphics Research IGD, 64283 Darmstadt, Germany
b Technische Universitit Darmstadt, 64283 Darmstadt, Germany

Abstract

In this paper we propose a software architecture that allows for processing of large geospatial datasets in the cloud. Our system is
modular and flexible and supports multiple algorithm design paradigms such as MapReduce, in-memory computing or agent-based
programming. It contains a web-based user interface where domain experts (e.g. GIS analysts or urban planners) can define high-
level processing workflows using a domain-specific language (DSL). The workflows are passed through a number of components
including a parser, interpreter, and a service called job manager. These components use declarative and procedural knowledge
encoded in rules to generate a processing chain specifying the execution of the workflows on a given cloud infrastructure according
to the constraints defined by the user. The job manager evaluates this chain, spawns processing services in the cloud and monitors
them. The services communicate with each other through a distributed file system that is scalable and fault-tolerant. Compared to
previous work describing cloud infrastructures and architectures we focus on the processing of big heterogeneous geospatial data.
In addition to that, we do not rely on only one specific programming model or a certain cloud infrastructure but support several ones.
Combined with the possibility to control the processing through DSL-based workflows, this makes our architecture very flexible
and configurable. We do not only see the cloud as a means to store and distribute large datasets but also as a way to harness the
processing power of distributed computing environments for large-volume geospatial datasets. The proposed architecture design
has been developed for the IQmulus research project funded by the European Commission. The paper concludes with the evaluation
results from applying our solution to two example workflows from this project.

Keywords: Cloud computing, Big Data, Geoprocessing, Distributed systems, Software architectures, Domain-specific languages

1. Introduction with inexpensive, medium-sized hardware—often referred to as
commodity hardware—that can work in concert to store large-

With the availability of modern sensors and LiDAR scan- volume data and to perform complex computations. Should
ners (Light Detection And Ranging) that deliver hundreds of resources become low, new nodes can be added to the cloud,
GiB up to several TiB per hour, the world-wide volume of geo- typically without any system downtime. At the same time,
spatial data grows exponentially. While processing spatial in- ¢]ouds provide broad network access which makes the stored
formation has always been a complex and time-consuming task, gata available from virtually anywhere through thick and thin

this new kind of large-volume data (Big Data or Big Geo Data) (lients [10]. This is an important fact to be considered if up-to-
requires new techniques that make use of modern technology date geospatial data is required in the field.

such as multi-core programming and GPGPU programming [1]. In this work we present a software architecture for process-
However, such large data typically does not fit into the mem- j;0 of Jarge-volume geospatial data in the cloud. Our design
ory of one computer. It is often stored in a distributed man- ¢opgigts of a web-based user interface where expert users can
ner on multiple computer systems. These computers make up define a processing workflow using a domain-specific language
the nodes of a distributed infrastructure typically referred to (DSL). This workflow is evaluated by an interpreter and a soft-
as a cloud. There is an ongoing effort to utilise the cloud for ware component called job manager subsequently. Both com-
the processing of Big Geo Data and to make it available for a ponents use pre-defined rules to create a processing chain that
wide range of applications such as earth observation [2-4], en- gpecifies execution of the workflow on a given infrastructure
vironmental protection [5, 6], or urban planning for future smart 5¢cording to user-defined constraints. While previous work fo-

cities [7f9]- ' ' .) cuses on spatial data storage and provisioning [5] as well as
An important property of clouds is their scalability which on specific programming paradigms [3, 11, 12] we present an
is facilitated by the fact that a cloud infrastructure offers virtu- 4 hitecture that is modular and flexible. It supports multiple

ally unlimited resources in terms of processing power and mem- algorithm design paradigms such as MapReduce [13], actor-

ory. Large data centres contain hundreds of computer systems based programming [14] or in-memory computing [15]. Which
kind of programming paradigm is used for a certain algorithm
depends on the specific use case and requirements. In addition

Email address: michel .kraemer@igd.fraunhofer.de (Michel
Kramer)

Preprint submitted to Computers & Graphics February 20, 2015

https://doi.org/10.1016/j.cag.2015.02.005
https://creativecommons.org/licenses/by-nc-nd/4.0/

to that, our architecture does not rely on a specific cloud infras-
tructure but can be deployed to multiple ones.

The rest of this paper is organised as follows. We start with
an analysis of related work and describe how our approach dif-
ferentiates from other cloud architectures for geospatial pro-
cessing. We also describe functional and technical require-
ments and how our design meets them. In the main part of this
paper we present the overall architecture of our system and then
describe the individual components in detail. In the following
we discuss implementation challenges and present evaluation
results from applying our solution to two example workflows
from the IQmulus international research project funded by the
European Commission. We finish the paper with a summary
and conclusion.

2. Related work

While there has been a lot of work on cloud computing and
cloud architectures as well as on geospatial data processing and
large spatial databases in the past, the combination of the two,
cloud architectures for spatial processing, has only become sub-
ject to research in the last couple of years [2, 11]. The availabil-
ity of commercial cloud solutions such as Amazon EC2 or Mi-
crosoft Azure has facilitated applications in this area. For exam-
ple, Qazi et al. describe a software architecture for Modelling
Domestic Wastewater Treatment Solutions in Ireland [5]. Their
solution is based on the Amazon cloud services on which they
install the commercial tool ArcGIS Server via special Amazon
Machine Images (AMIs) provided by ESRI. Qazi et al. make
use of ArcGIS Server’s REST interface to deploy web services
providing the spatial datasets. Additionally, they implement a
web application that can be used for decision support. While the
focus of their work is on deploying a highly available data stor-
age and a decision support tool, they do not cover the issue of
very large geospatial datasets and how the capabilities of cloud
computing can be exploited to process them. In addition to that,
their work depends on the commercial ArcGIS Server and the
respective Amazon Machine Images. Our architecture, on the
other hand, makes use of freely available open-source software
and can be configured to run on different infrastructures.

Li et al. on the other hand leverage the Microsoft Azure
infrastructure to process large volume datasets of satellite im-
agery in a short amount of time [3]. Their solution consists
of a cluster of 150 virtual machine instances which they claim
to be almost 90 times faster than a conventional application on
a high-end desktop machine. They achieve this performance
gain by implementing an algorithm based on reprojecting and
reducing. This approach can be compared to MapReduce [13].
However, it was explicitly developed for the Azure API which
provides a queue-based task model that is quite different to
MapReduce. Compared to their approach our work does not
focus on one specific processing model. Instead, we describe
an architecture that is flexible and facilitates a number of differ-
ent approaches to distributed algorithm design.

Since a growing number of cloud infrastructure providers
support MapReduce—in particular its open-source implemen-
tation Apache Hadoop—the geospatial community has started

developing solutions specifically targeted at this. ESRI GIS
Tools for Hadoop, for example, provides a number of libraries
that allow Big Geo Data to be analysed in the cloud. The li-
braries are released as open source. They offer a wide range
of functionality including analytical functions, geometry types
and operations based on the ESRI Geometry API. While there
has been work leveraging this framework [16, 17] the MapRe-
duce paradigm implies fundamental changes to geospatial algo-
rithm design as it has been done before. The effort of migrating
an existing algorithm to MapReduce often outweighs its advan-
tages. MapReduce is not the only solution to exploit cloud com-
puting infrastructures. Other approaches such as actor-based
programming or in-memory computing are often more appro-
priate for certain algorithms and in some cases even a lot faster
[18]. Our architecture enables arbitrary algorithms to be exe-
cuted in the cloud which allows developers to select the most
appropriate programming paradigm for a specific purpose.

Since geospatial applications in the cloud are quite new,
the community is still looking for best practices. Agarwal and
Prasad report from their experience with implementing a cloud-
based system called Crayons that facilitates high-performance
spatial processing on the Microsoft Azure infrastructure [11].
They present several lessons learnt ranging from data storage
to system design. In particular, they state that a large sys-
tem should be designed with an open architecture so individ-
ual components can be replaced by others without affecting
the overall system’s functionality. Our architecture is service-
oriented and consists of loosely coupled components that can be
exchanged quite easily. That way, a wide range of spatial pro-
cessing services are supported and can be extended later with-
out requiring fundamental changes to the architecture. Addi-
tionally, our approach allows individual components to be re-
placed if requirements should change in the future.

The OGC (Open Geospatial Consortium) has recently set up
anew domain working group for Big Data dealing with service-
oriented architectures for distributed processing of spatial data.
Our architecture is very flexible and allows for various kinds of
processing services. This also includes web processing services
such as the OGC WPS (Web Processing Service). The OGC is
of major importance for the geospatial community and we con-
sider the possibility of integrating OGC services into our sys-
tem an advantage. However, OGC services are web-based and
have an HTTP interface. This means data has to be transferred
through HTTP before it can be processed. This imposes a major
performance hit. In our architecture we deploy a distributed file
system (see section 7) to which processing service are directly
connected. This allows for faster data access. Nevertheless, in-
cluding services such as the OGC WMS (Web Map Service) or
WES (Web Feature Service) as an external data sources can be
very beneficial if this improves the quality of processing results.

Our system employs a workflow editor (section 5) and a
component called job manager (section 9.3) that is able to man-
age the cloud infrastructure, to deploy services to computing
nodes and to execute distributed workflows. There are other ap-
proaches that also support cloud-based workflow management.
Malawski et al. describe a model for the execution of scientific
applications [12]. Based on their experience with grid-based

component models they show how to dynamically couple so-
called workers to create a processing workflow. These workers
are stored as a ready to deploy virtual appliance and provide
a standardised interface to describe how to connect it to other
components. A Ruby-based API allows developers and scien-
tists to create workflows by specifying all involved workers and
their order of execution.

The Pegasus Workflow Management System [19] is similar
to the approach of Malawski et al. in the sense that it also pro-
vides a programming interface for developers and scientists us-
ing Java, Python or Perl. Workflows are specified by describing
a DAG (Directed Acyclic Graph) in code. Pegasus automati-
cally translates this graph to an executable workflow that can
run on various backends (i.e. cloud and grid infrastructures)
such as Amazon EC2, Nimbus, or Open Science Grid.

Compared to Pegasus and the approach from Malawski et
al., our architecture, on the other hand, allows the user to define
a workflow using a high level DSL which reduces the required
in-depth knowledge about existing components, execution or-
der or a particular programming language. Instead of a com-
mon interface we rely on metadata describing each processing
component and, in particular, how to deploy and execute it to
simplify the migration of existing components to our architec-
ture. Finally, we eliminate the overhead of managing virtual
appliances by putting our job manager in responsibility of creat-
ing compute nodes with all needed libraries and the processing
component itself.

Note that there are other approaches to workflow modelling,
mostly graphical ones such as Activiti', Visual Paradigm?, or
the Workflow Editor from the Java Workflow Tooling (JWT)?.
These tools focus on Business Process Modelling (BPM) but
can be used for other purposes as well. The Pegasus Workflow
Management System even contains a graphical editor where
users can draw workflow diagrams directly without knowledge
of any programming language.

While it is often easier for people to read a workflow in a
graphical way—using boxes that represent actions and arrows
to depict the data flow—it can be hard for them to create their
own designs. Whitley reports that untrained people often find
it hard to work with graphical editors as diagrams can quickly
become very complex [20]. The readability of any representa-
tion (no matter if graphical or textual) depends on the so-called
secondary syntax, meaning the way things are organised on the
screen. Untrained people often struggle with placing diagram
elements (boxes and arrows) in a meaningful manner.

However, flow diagrams, for example, are typically well
suited to represent workflows and the tools above also assist
users in structuring. On the other hand, compared to our domain-
specific language, existing workflow tools are rather generic. A
DSL can be adapted to a specific use case and domain vocabu-
lary. The workflow scripts in our case also support a declarative
modelling style and are hence often very short (see examples in
section 5 or 13). Users don’t have to specify how exactly the

Thttp://activiti.org/
Zhttp://www.visual-paradigm.com/
3http://www.eclipse.org/jwt/

system should perform a task. The interpreter (section 9.2) and
job manager (section 9.3) figure this out based on pre-defined
rules. Such a declarative modelling style is supported by exist-
ing graphical solutions only to a certain extent.

3. Requirements

The IQmulus research project aims for creating a platform
for the fusion and analysis of high-volume geospatial data such
as point clouds, coverages and volumetric data sets. The ar-
chitecture design presented here is based on a detailed require-
ments analysis that has been carried out in the IQmulus project
together with users from the land, urban and marine domain.
Based on that, we designed mock-ups for the user interface and
created robustness diagrams, a technique known from use-case
driven object modelling [21]. The robustness diagrams helped
us to identify components needed in the architecture. Such an
approach makes sure a large number of user requirements are
met and that the system generally provides the desired func-
tionality. The results of this analysis can be found in the public
deliverables D1.2.1, D1.2.2, D1.2.3 as well as D2.3.1 of the re-
search project IQmulus [22-25].

Besides the identified requirements there are general as-
pects related to the processing of large-volume geospatial data
as well as sustainable software architectures. The issues that
we considered for our architecture design are presented in the
following subsections.

3.1. Big Geo Data

According to Laney there are three aspects defining Big
Data: volume, velocity, and variety [26]. Applied to geospa-
tial processing (Big Geo Data) we can conclude the following:

Volume. As described above geospatial data sets tend to
be very large. In particular if modern sensor networks, LiDAR
scanners (terrestrial as well as aerial), and artificial satellites
are involved that produce several GiB or TiB per hour. A sys-
tem that processes such amounts of geospatial data should be
scalable, so it is able to process an arbitrarily large data vol-
ume. Our architecture makes use of mature components (e.g.
the Apache Hadoop File System HDFS) that have been proven
to be scalable. Additionally, we use a configurable rule set that
allows our components to adapt to the cloud infrastructure and,
hence, the available resources.

Velocity. Modern sensors produce large data streams in a
very short amount of time. The faster the data can be processed
by a system the higher the derived value of information. For
example, today aerial images, orthophotos, and digital terrain
models are extensively used for urban planning, but due to lack
of time and money they are only updated every second or third
year [27]. An automated system that is able to generate this
information from a very large input data set (i.e. satellite im-
agery and LiDAR point clouds) in a short amount of time can
help urban planners consider current developments. Our sys-
tem allows for such automated processes through user-defined
workflows (see section 5). In addition to that, it is rule-based
and users can specify if they prefer speed over accuracy or vice-
versa (see section 9.3).

Variety. Geospatial data is typically very heterogeneous.
Oftentimes data from different sources has to be combined, mul-
tiple data exchange formats, reference systems, and accuracies
have to be considered, etc. A system processing heterogeneous
geospatial data should be very flexible to accommodate for this.
The architecture presented here meets this requirement as it
consists of small atomic and independent processing services
that can be flexibly chained to create a larger workflow.

We see two areas where the cloud offers reasonable benefits
over traditional geospatial information systems.

High-performance computing. The cloud offers virtually
unlimited resources in terms of processing power and memory.
Cloud infrastructures are scalable and elastic which means new
resources (more processing nodes or more memory) can be ac-
quired on demand. As mentioned above, the faster geospatial
data can be processed the higher is its practical value.

Distributed services. In addition to that, the cloud, and in
particular a Software as a Service solution (SaaS), offers dis-
tributed services that can be used “to access, process, visualise,
and share data, metadata and models from various domains for
various purposes” [28]. Access to cross-thematic and linked
geospatial information helps GIS experts in planning and deci-
sion making.

In this work we mainly focus on the high-performance com-
puting aspect. Although our system also offers distributed stor-
age we have not investigated this area thoroughly yet.

3.2. Sustainable software architectures

There are a number of articles that describe quality indi-
cators for sustainable software architecture design as well as
architecture evaluation methods [29-32]. In this work we focus
on the following aspects.

Functionality. As described above, a detailed requirements
analysis has been carried out before the architecture design took
place. The solution presented here and the functionality it pro-
vides reflects the identified requirements.

Performance. Our architecture employs components that
make use of rules specifying declarative and procedural knowl-
edge to decide in which way geospatial processes should be run
in the cloud to make best use of existing resources (see sec-
tion 9.3). Moreover, the geospatial processes are designed to
be highly scalable using multi-core algorithms, MapReduce, or
similar techniques.

Availability. Our system is expected to be able to perform
well in various situations. For example, in a catastrophe sce-
nario it should deliver results in a short time and with a high
degree of reliability. The components in the system are there-
fore designed to be redundant, so there is no single point of
failure (SPOF). The distributed file system, for example, offers
a high fault tolerance in respect to hardware errors through data
replication. Moreover, we use NoSQL databases that are de-
signed to run in the cloud and offer high availability features
such as replication and automatic failover.

Modifiability. The architecture is service-oriented. Loose
coupling and high cohesion make sure services can be inter-
changed and connected in different ways. The fact that compo-
nents are independent from each other allows the architecture to

be modified quite easily later on without requiring the specific
service implementations to be changed.

Portability. The architecture does not require a specific
hardware or operating system. This is rather important for a
distributed system as the individual components may run on
different platforms and machines. We rely on open-source com-
ponents that are compatible to various platforms. We also pro-
vide a generic interface for data access without requiring the
components to handle platform-specific issues (see section 8).

Configurability. Our system allows end users to define
high-level processing workflows according to their needs. These
workflows are written in a domain-specific language (DSL),
a programming language tailored to a specific application do-
main. Since the DSL consists of domain vocabulary the work-
flow definitions are easily readable by experts working in this
domain. At the same time the language has a defined syntax
and grammar and is hence parsable by machines. The DSL al-
lows end users to specify constraints such as the desired output
quality (accuracy, completeness, etc.) or the kind of algorithms
to be used (fast vs. precise algorithms). Our system uses rules
to reason about these constraints and to produce a processing
chain that matches them best.

4. Overall architecture

In this section we present the overall architecture and give a
short description of all components and how they work together
(see also figure 1 on the following page). In subsequent sections
we describe the main components in detail.

A GIS expert uses the system through a web-based user in-
terface. This interface consists of three components: a data
upload form, a data browser and the workflow editor.

First the GIS expert uses the data upload form to store new
geospatial data together with related metadata (c.f. section 10)
in the cloud. The upload form sends the data to the data access
service (section 8) which saves it in the distributed file system
(section 7). Metadata can either be entered manually in the up-
load form or provided as an ISO 19115 compliant XML file.
Existing data sets can be accessed through the data browser
which allows for searching the file system based on a spatial
extent or metadata.

The GIS expert then specifies a high-level workflow using a
domain-specific language (section 5). The workflow is saved in
a workflow database for later use. Additionally, it can be shared
with other users who have similar requirements.

Next, the GIS user executes the workflow through the user
interface and selects whether the system should prefer process-
ing speed over accuracy or vice-versa. The workflow will first
be parsed (section 9.1), interpreted (section 9.2), and finally
processed by the job manager (section 9.3) which queries the
catalogue service (section 10) for metadata about processing
services and the data to be processed. The job manager applies
pre-defined rules to create a process chain specifying which
processing services (section 6) should be executed in which or-
der and on what nodes in the cloud. The job manager starts the
services and monitors their execution while the services store
their processing results in the distributed file system.

GIS expert

X

%;:

Main user interface
Workflow Data File upload/
editor _>O_> Parser browser download
|
0 oot ov O o
Interpreter Notification
? Legend
R
: : Data access
Workflow service () Job manager —()—] Catalogue service N
9 9 service (] Passive component
) 0 ()
Workflows Data Write access
)) catalogue
Processing services
(Processing cloud) - - Read/write access
catalogue
Unidirectional
O communication channel

0

Bidirectional

H
z
O
H
Z

(Storage cloud)

C

Distributed file system

communication channel

2
v

Request/response
communication channel

H
g
O
H
bid

)

Figure 1: The overall architecture of our system

Finally, the job manager creates a new entry for the gener-
ated result set in the data catalogue. After that, it sends a noti-
fication to the user interface. If the process is long-running and
the user has already closed the user interface, this notification
might also be an email sent to the user’s inbox.

5. Workflow editor

In order to control geospatial processing in the cloud, the
GIS expert defines high-level workflows in a web-based work-
flow editor in our system’s user interface. The editor has a num-
ber of features that help users create the workflow—for exam-
ple, syntax highlighting, auto-completion, and context-sensitive
cue cards. Workflows are specified using a domain-specific lan-
guage (see screenshot in figure 2 on the next page).

DSLs have been used before in the area of cloud computing
to control distributed processing. For example, Apache Pig, a
platform for analysing Big Data sets, provides a language called
Pig Latin [33]. It looks a lot like the database query language
SQL—which is in fact also a domain-specific language—so
users who are familiar with SQL are able to quickly learn and
use Pig Latin. The language drives distributed MapReduce
jobs [13] executed in the cloud by the Apache Hadoop frame-
work. Pig Latin therefore simplifies the process of specifying
complex parallel computing tasks which can sometimes be te-

dious even for experienced programmers. However, it is very
generic and lacks support for geospatial processing. This gap is
closed by the SpatialHadoop framework [16] which adds spa-
tial indexes, geometrical data types and operations to Hadoop.
In addition to that, SpatialHadoop offers a DSL based on Pig
Latin. Pigeon is a query language that allows users to specify
complex spatial queries in a readable and concise way [34].

Our workflow editor goes a bit further and provides a high-
level DSL that does not require users to know details about
available processing services, the data stored in the cloud, or
the infrastructure the services are executed on. Instead the users
can focus on the workflow—i.e. on what they want the system
to do and not on how it should be done.

For example, the following workflow first selects a data set
from the distributed file system containing a recently updated
point cloud. It then removes NonStaticObjects from the data
set. Trees and FacadeElements are selected and put into another
data set called CityModel.

with recent PointCloud do
exclude NonStaticObjects
select added Trees and added
FacadeElements
add to CityModel
end

ESave | $cCut]Copy WyPaste

Workflows * Select trees %
with recent PointCloud do
exclude NonStaticObjects
select added Trees and added FacadeElements

& Common
O Select trees
[Change detection

& Private add |
[Coregister DTM end m
[Interpolation do
with Citend ’
excl exclude inas
visu add
Cue card end to

select
You are currently working on data and
from GityModel. Enter a command aa.
to manipulate the data. Enter end fo
close CityModel.

Possible commands are:

exclude

Remove certain objects from loaded
data

select

Select certain objects from loaded
data and exclude others

add to

Add loaded data to a given data set
end

Closes the current data set

Figure 2: The workflow editor assists users in writing high-level geospatial
processes. It supports syntax highlighting and auto-completion. In addition to
that, context-sensitive cue cards on the left tell users about their options.

Note that terms such as recent or NonStaticObjects can mean
many things depending on the context in which they are used
(i.e. application domain). We use declarative knowledge en-
coded in rules to map such terms to processing services or pro-
cessing parameters (see section 9.2).

The workflow finally removes all Antennas from the city
model and visualises the result.

with CityModel do
exclude Antennas
visualize

end

For more information about the DSL used here and the lan-
guage design process we refer to our previous work [27].

6. Processing services

Geospatial data is typically heterogeneous. GIS experts of-
ten need to combine different kinds of information such as vec-
tor data, point clouds, or aerial images to one single data set.
Our system has to be able to handle various data exchange for-
mats, different resolutions, spatial reference systems, etc. Sup-
porting a wide range of spatial algorithms is key to a system
that can be used in multiple use cases.

The spatial algorithms in our system are implemented by
experts from various domains with different backgrounds—e.g.
mathematics, photogrammetry, or land survey. Each algorithm
is provided as a separate program—we call them processing
services. Linking multiple processing services to a chain al-
lows for creating complex workflows. A similar approach can
be found in the Unix operating system where pipes can be used
to send data through multiple programs. Just like in Unix each
of our processing services serves exactly one specific purpose.

Job manager

o P ¢

Node A Node B Node C

Algorithm A

MapReduce job
P ueel (single core)

Algorithm A

MapReduce job (single core)

Algorithm A

Algorithm B (distributed) (single core)

Algorithm D . -
(GPU) Algorithm B (distributed)
Algorithm D Algorithm C Algorithm C
(GPU) (multi core) (multi core)

Distributed file system

Figure 3: An example of different processing services that can be deployed to
the cloud. The job manager oversees their execution whereas the distributed
file system is the main communication channel for all processes.

This allows for a very high flexibility. For example, there is a
service for corregistration, one for triangulation, one for inter-
secting 2D or 3D data, etc. Input and output parameters of each
service are described in a catalogue (see section 10) so the sys-
tem knows how they can be connected (this process is described
in section 9.3).

The processing services have been developed using various
programming paradigms. As described above, while MapRe-
duce is currently one of the hot topics in cloud computing it is
not always the best solution for every problem, and other pro-
gramming paradigms such as actor-based programming or in-
memory computing sometimes allow for faster and more flex-
ible algorithms. Furthermore, in the geospatial processing do-
main, a lot of high-performance algorithms already exist and
even though they might not be optimised for parallel computing
it is desirable to reuse them in the cloud instead of completely
rewriting them from scratch.

Our architecture therefore supports the following types of
algorithms (depicted in figure 3).

MapReduce jobs. We use Apache Hadoop to execute pro-
cessing algorithms implemented in MapReduce. Such jobs may
be split up into multiple tasks which run on different nodes. The
tasks communicate with each other through the distributed file
system.

Distributed algorithms. Our architecture supports algo-
rithms implemented using distributed programming paradigms
such as agent-based programming or in-memory computing.
Such algorithms are typically provided as binary executables.
The job manager executes them and oversees their resource us-

age.

Distributed file system

Data centre B

(s) (o) (s)
Crose) (e)

Data centre A

Figure 4: An example depicting how multiple nodes from different locations
(i.e. data centres) contribute to the distributed file system.

Multi-core/GPU algorithms. Such algorithms run on a
single node only but use multiple CPU or GPU cores in order
to increase performance. Those algorithms typically scale ver-
tically and profit from hardware upgrades—e.g. more CPUs, a
better graphics card, or more memory. However, they do not
scale horizontally over multiple nodes in the cloud. In order to
compensate for that, the job manager distributes input data to
multiple instances of such algorithms if possible (see details in
section 9.3).

Single-core algorithms. Our architecture allows single-
core algorithms (most likely legacy algorithms) to be executed.
They are treated like multi-core algorithms but in order to par-
allelise the processing the job manager has to split input data
and distribute it to several instances of these services (see sec-
tion 9.3).

7. Distributed file system

A distributed file system (DFS) is a virtual file system that
spans over multiple nodes in the cloud and abstracts away their
heterogeneity (see figure 4). This means that the individual
nodes may use different operating systems and different file sys-
tems but the DFS provides a common interface for applications
to access data on these nodes. A distributed file system typi-
cally has the following capabilities.

Location Transparency. The application can access the
data as if it was stored locally no matter where it is actually
located—i.e. on which node and in which data centre.

Access Transparency. The DFS provides a common inter-
face for applications to access data in a consistent way, inde-
pendent of the underlying operating system and file system.

Fault-tolerance. A DFS usually replicates data to a number
of nodes. If one node fails the data will still be available on
other ones.

Scalability. A DFS can operate on a small number of nodes
up to a large number. New nodes can be added on demand and,
more importantly, without any downtime.

The distributed file system in our architecture stores up-
loaded data and processing results. It also acts as the main
communication channel between the processing services. If
multiple processes are called sequentially or in parallel all inter-
mediate results will be transferred through the DFS. We chose
this approach over direct communication between the services
to provide a high modularity of the system. It allows processing
services to run independently, asynchronously and in different
orders to enable a wide range of processing workflows. Inde-
pendent processes may be replicated and transferred to other

nodes in the cloud on demand and be executed there. This
only works if these nodes provide enough transparency in terms
of location and access—capabilities which are provided by the
DEFS. First, the processing services themselves do not need to
care about where the data is located. Second, they can use a
common interface which does not depend on the actual tech-
nology used to store the data. By applying these principles the
underlying file systems or operating systems and, therefore, the
underlying nodes can easily be interchanged without affecting
the way the processing services work.

There are a lot of scenarios where analysing and processing
geospatial data is not only critical in terms of time but in terms
of availability. For example in a disaster scenario it is manda-
tory to get fast and accurate results to provide good decision
support. The scalability offered by a DFS allows the number
of nodes involved in the processing—and therefore the com-
putational power—to be increased on demand whereas fault-
tolerance guarantees the availability of all needed data. The lat-
ter is accomplished by replicating the data to different locations
in terms of data centres, countries or even continents.

The Hadoop Distributed File System (HDFS) is open-source
released under the Apache license. Apart from the general prop-
erties described above, HDFS is specifically designed for large
data sets and high availability. Due to the fact that the file sys-
tem is implemented in Java it is also platform-independent. The
HDFS API allows applications to access files just as if they
resided on any other file system. In fact, even the local file
system can be accessed through the API.

Depardon et al. compared several distributed file systems
such as HDFS, iRODS and Lustre [35]. They have shown, that
the main difference is not about performance but about the de-
sign of the file system. HDFS is the only DFS they compared
that offers automatic load balancing. The fairly good perfor-
mance in combination with its platform independence and the
sophisticated MapReduce support make it a good choice for our
architecture

Apache Spark, an open-source library for high-performance
data processing [36], supports HDFS and offers an API for var-
ious programming languages including Java, Scala and Python.
This allows many geospatial processing applications to access
the file system.

Applications written in C, however, require a workaround.
The C API for HDFS based on the Java Native Interface (JNI)
is not well supported. We therefore set up an NFS (Network
File System) wrapper service that provides a virtual, mount-
able file system but internally forwards to the HDFS. This ap-
proach implies overhead and can lead to a performance drop
if the application tries to access a file randomly instead of se-
quentially. HDEFS is stream-based and random access has to
be simulated by sequential reads. We therefore suggest that
such legacy applications—although our architecture supports
them—should be avoided or reimplemented, so they access the
HDEFS directly.

(s)
L

| Parser ‘

C Abstract syntax tree >

I Interpreter HRules (declarative knowledge)>
C Abstract workflow >
J/ CRuIes (procedural knowledge)>

e
C Metadata)
v ! !

I Service 1 ‘ I Service 2 ‘ I Service n ‘

I Job Manager

Figure 5: Scripts are parsed to an abstract syntax tree. An interpreter traverses
this tree and generates an abstract model that is independent of the DSL. Ac-
cording to this model the job manager than executes the processing services in
the cloud.

8. Data Access Service

The Data Access Service provides a RESTful HTTP-based
interface to the Hadoop Distributed File System (HDFS) and
offers operations to upload, read and delete files or directories
as well as to list files in directories, set permissions etc.

Several, redundant instances of the data access service may
run in the same cloud. Since the service itself is stateless, the in-
stances do not have to communicate with each other. However,
they all access the same distributed file system and therefore
serve the same content.

Being a REST service the data access service provides a
couple of handy features such as different resource represen-
tations (e.g. HTML or JSON) and a self-descriptive interface.
In particular, the latter means that clients can browse the file
system by entering it at the root level (the service’s main en-
try point) and then following hypermedia links. This results
in a higher level of abstraction and a flexible interface, where
changes applied to the interface won’t break clients—c.f. the
HATEOAS constraint (Hypermedia As The Engine Of Appli-
cation State) which is an essential part of REST [37].

9. Executing workflows in the cloud

In order to execute the workflows defined by the GIS ex-
perts in the workflow editor (section 5) they first have to be
parsed and then interpreted. The following sections describe
this process which is split into three phases (c.f. figure 5) han-
dled by different components: the parser, the interpreter, and
the job manager.

9.1. Parser

The domain-specific language used in our workflow edi-
tor is specified through a Parsing Expression Grammar (PEG).

In fact, programming languages can as well be defined in a
context-free grammar (CFG) using EBNF (Extended Backus-
Naur Form). One of the benefits of PEGs, however, is that they
can never be ambiguous. They are therefore very easy to define
and are often not as complex as CFGs, not least because they
don’t require an additional tokenisation step. On the other hand,
PEGs require more memory than CFGs, but for small languages
such as DSLs this disadvantage can be neglected.

We use the open-source library PEG.js* to automatically
generate a language parser that can be embedded in our user
interface running in the web browser. The main purpose of the
parser is to create a machine-readable model of the workflow—
i.e. an abstract syntax tree (AST)—which can be traversed by
the interpreter.

9.2. Interpreter

The interpreter traverses the AST generated by the parser
and creates a model that is independent of the domain-specific
language. It translates terms in the workflow to processing ser-
vices or processing parameters. The interpreter makes use of
declarative knowledge encoded in pre-defined mapping rules.
In their book ‘Model Driven Engineering and Ontology Devel-
opment’ GaSevic at al. define declarative knowledge as fol-
lows [38, p. 12].

Declarative knowledge describes what is known about
a topic or about a problem. For example, some
statements of declarative knowledge may describe
details of concepts and objects.

Gasevic at al. specify that declarative knowledge consists
of concepts, objects, and facts. In our case we use this kind of
knowledge to express relations between terms in the workflow
DSL and processing services—including parameters, if neces-
sary. Terms in the DSL are actually instances (i.e. objects) of
concepts taken from the application domain. The declarative
knowledge expresses what we know about them, namely how
they map to processing services and parameters. The declara-
tive rules help the interpreter transform the abstract syntax tree
to a model that is independent of the domain-specific language.

Figure 6 shows mappings that appear in the example work-
flow from section 5 above.

o One-to-one mapping. If a term such as exclude appears
in the AST the interpreter maps it to exactly one process-
ing service—in this case a filter removing objects that
should be excluded.

o Many-to-one. The terms recent and PointCloud, for ex-
ample, are mapped to a processing service that searches
the distributed file system for a data set containing the
most recent version of a point cloud.

“http://pegjs.org/

exclude Filter

recent

File locator A

PointCloud

Feature extraction

Trees

Tree classifier

Figure 6: Example of how terms in the abstract syntax tree can be mapped to
data sets and processing services.

e One-to-many. Terms such as Trees may be mapped to
parametrised processing services. For example, the pro-
cessing service for feature extraction is implemented us-
ing machine learning algorithms. The term Trees there-
fore needs to be mapped to both, the feature extraction
service as well as a pre-trained classifier for trees.

In addition to that, many-to-many relations can also hap-
pen although they do not appear in the example.

By the use of mapping rules as it is proposed here the in-
terpreter may be replaced without affecting the DSL and the
parser. This means that even if the back-end (i.e. the inter-
preter, the mapping rules, the job manager, and the processing
services) are replaced by other implementations the scripts writ-
ten by the domain users stay the same. In particular, this ensures
the domain knowledge that the users put into the scripts remains
valid for a long time even if the underlying cloud infrastructure
changes—e.g. if the infrastructure is transferred from one cloud
provider to another.

Note that, according to the overall architecture (figure 1) the
interpreter does not have access to the distributed file system or
the catalogue service. This means that the interpreter knows lit-
tle about the actual files stored in the cloud, the input and output
parameters of the processing services, or the actual infrastruc-
ture the workflow is executed on. All knowledge required by
the interpreter has to be specified in its declarative mapping
rules. Based on this, the interpreter generates instructions for
the job manager which apparently has access to more informa-
tion and can therefore generate a concrete process chain.

9.3. Job manager

The job manager traverses the abstract model generated by
the interpreter and generates a concrete process chain that spec-
ifies which services have to be executed in what order.

The catalogue service (see section 10) provides further in-
formation about the services and the data to be processed. This
includes input/output parameters, accuracy, completeness, etc.
The job manager uses procedural knowledge encoded in pro-
duction rules to evaluate the workflow and the additional data.
Depending on these production rules and on the constraints de-
fined with the workflow the job manager may automatically al-

locate resources in the cloud. For example, a typical production
rule looks like as follows (pseudo code).

when

user needs results as fast as possible
then

increase number of processing nodes

The job manager tries to meet this constraint by replicating
more virtual machines in the cloud and spawning more pro-
cesses.

If users indicate they prefer performance over quality the
job manager may select a processing service that is faster but
produces less accurate results, or select a data set that is smaller
and hence faster to process but not as complete or detailed as
others.

when
user prefers speed over accuracy
then
use terrain grid instead of LiDAR point
cloud

The job manager may also produce a process chain that suits
the infrastructure it should be executed on. For example, the
following rule affects on which node a certain service is de-
ployed.

when

processing service X needs Windows
then

deploy X on Windows node

Additionally, the job manager can handle resource manage-
ment issues.

when

data is too large for a single node
then

split data into tiles

distribute tiles to multiple nodes

When handling high volume data, the job manager takes
also care of deploying the services close to the data to be pro-
cessed e.g. the same data centre. This is meant to decrease the
amount of transferred data over a broadband connection, hence
increasing the performance of the whole workflow.

We developed the job manager using the rule-based system
Drools®. This open-source framework has been implemented in
Java for quite some time already and is very mature with a large
community. Additionally, Drools offers a declaration language
called the Drools Rule Language (DRL) to simplify the process
of defining the rules themselves. Other rule-based systems use
more complex notations. For example, in JESS rules have to be
defined in LISP. This makes the rule definition process, in our
experience, more complex and error-prone.

The rules are stored in a database. This allows us to add,
remove or change them in production without downtime. Ad-
ditionally, it allows us to deploy multiple instances of the rule
system, while all use the same set of rules. Hence we are able

Shttp://wuw.drools.org/

to increase the availability and scalability of the job manager
significantly.

We use the NoSQL database MongoDB which is tailored
to be deployed to the cloud. We prefer MongoDB over a clas-
sical, relational database as it offers advanced features such as
replication and automatic failover strategies out of the box. The
set of rules is a crucial part of the job manager. Hence its un-
availability would lead into the inability to reason about the
workflow. MongoDB’s replication feature allows us to store
the data redundantly, so there is no single point of failure. Note
that even though we chose MongoDB here, other cloud-capable
NoSQL databases such as CouchDB, for example, may also be
used. The loose coupling of our architecture allows us to easily
exchange individual technologies. In our experience, however,
MongoDB is easy to install and use and meets our requirements
very well.

9.4. Parallelisation

The job manager is responsible for distributing the processes
to the different nodes in the cloud. In order to make best use
of the available hardware, individual processes can be imple-
mented with parallel, multi-core or distributed algorithms. Some
processes might use algorithms that utilise GPU cores (if avail-
able) to perform high-performance calculations or use MapRe-
duce. The job manager has to take care to choose the proper
infrastructure—i.e. GPGPU cluster or Apache Hadoop. Fur-
thermore, there are existing algorithms which only use a single
CPU core. In this case the job manager needs to find a good
strategy to split the input data and distribute it to multiple in-
stances of this service. To summarise, the job manager needs
to handle the following cases (c.f. the list of algorithm types in
section 6).

MapReduce jobs. The job manager forwards MapReduce
jobs to Apache Hadoop. Hadoop is responsible for executing
the job and for distributing work to the different nodes in the
cloud. The job manager configures the infrastructure and mon-
itors the process execution.

Distributed algorithms. Processes can be implemented
with frameworks for distributed computing such as agent-based
frameworks or Message Passing Interface (MPI). The job man-
ager has to keep track of which nodes these processes run on.

Multi-core/GPU algorithms. The job manager has to keep
track of used CPU/GPU cores in order to decide how many pro-
cesses can run on one node at the same time.

Single-core algorithms. The job manager has to find a
strategy to split input data and to distribute the chunks to the
various processing services. Also, the job manager is respon-
sible for spawning the single-core processes and to distribute
them to the different nodes in a way that best utilises the possi-
bilities of the available hardware.

Again, the job manager makes its decisions based on pro-
duction rules. Let us suppose there is an arbitrary single-core
service A, and furthermore a service B which is able to split
input data into tiles. The following production rule can be used
to describe the dependency between these two services (pseudo
code).

10

’ Data set 1 ‘ ’ Data set 2 ‘

' '

’ Service A ‘ ’ Service B ‘

Figure 7: A processing chain with two independent processes A and B and a
process C that can only run if results of A and B are available.

when
processing service A is
then
call processing service B first and
distribute results of B to multiple
instances of A

called

The generated process chain may not only contain one of
the described process types but any combination as depicted in
figure 3 on page 6. The job manager will take this into account
and consequently start the next process in the chain as soon as
possible. In particular this means that it can start instances of
a processing service even if the former step has not returned its
full result set. Obviously it is necessary that intermediate data
will be consistent enough to fulfil the requirements of at least
one instance of the subsequent processing service.

In addition to that, the job manager can execute services that
are completely unrelated to each other in parallel. For example,
figure 7 shows a processing chain where service C depends on
the results of A and B. Obviously, A and B can be executed in
parallel since they are independent. Execution of C may only
start if the results of A and B are available.

10. Catalogues

Geospatial data is usually stored along with metadata pro-
viding additional information such as resolution, accuracy, com-
pleteness, etc. Metadata is needed to interpret and process data
in a proper and meaningful way. The job manager makes heavy
use of this data for decision making as described in section 9.3.
Additionally, it also needs information about the processing ser-
vices such as input parameters, algorithmic accuracy, etc.

Since the job manager cannot work properly if the meta-
data is not available, we use MongoDB to store these two types
of metadata (as described in section 9.3). MongoDB provides
replication and automatic failover and recovery strategies that
allow us to set up a highly available system.

The metadata is provided by two independent services act-
ing in front of the database. The data catalogue and the service
catalogue provide access to the geospatial and processing ser-
vice metadata respectively. They offer a REST interface which
can be used by any component that needs access to the data
without knowledge about the actual database in use.

10.1. Data catalogue

The Data Catalogue Service provides access to all metadata
stored along with the geospatial data residing in the distributed

file system. This catalogue is designed to support metadata
standards such as ISO 19115 and 19119. The job manager
primarily uses data such as resolution or size to distinguish
datasets which are fast to process from others which are very
detailed. It also uses this data to decide how to split and dis-
tribute them to different instances of one service. If necessary
the processing services may use this information as well.

10.2. Service catalogue

Every service which will be deployed to the system comes
with a file providing information about the service and how it
can be executed in the infrastructure. The service catalogue
observes these files, caches the content and provides access in
a uniform way. The job manager requires the metadata listed
in table 1 to build the process chain, prepare the infrastructure,
and deploy the services. Note that the job manager solely acts
based on the pre-defined procedural rules. It has no additional
a priori knowledge. It must be possible to completely infer the
knowledge about how two services can be connected to each
other from the rules in combination with the service metadata.

Metadata Description

ID Unique identifier to be used while
defining workflows

URI URI of Service (may include place-
holders e.g. for parameters)

input Representation and format of data

parameters Applicable parameters

output Representation and format of data

language The programming language used for
the implementation

libraries Libraries the service depends on

(0N} The operating system the service relies
on

accuracy Algorithmic accuracy

computation time Computational time in relation to data

size

locality If the algorithm is applicable to a sub-
space of the data
alternatives Services which provide same function-

ality but use different algorithms

Table 1: Relevant service metadata for process chain generation

11. Implementation challenges

The architecture presented here has been developed for the
IQmulus research project which is dealing with high-volume
fusion of geospatial data. While implementing our solution we
were facing a number of challenges. For example, designing the
domain-specific language for the workflow editor was a com-
plex task. Based on our previous work [27] we used a DSL
modelling method which consists of several steps, including
the text-based analysis of all user stories gathered in the user
requirements analysis phase, as well as the definition of a do-
main model from which we could derive the terms needed for

11

the DSL. The main challenge was to create a language that is on
the one hand powerful enough to cover the user requirements,
but on the other hand clear enough to be understandable for the
domain experts. Close communication with the users is in our
opinion key to successful DSL design.

Another challenge was the infrastructure management—i.e.
provisioning of new nodes in the cloud, resource management,
etc. We were investigating several solutions and finally decided
to rely on the open-source software OpenStack. This tool al-
lows us to manage multiple cloud infrastructures (e.g. Amazon
EC2 or VMware vSphere) and therefore keep our architecture
compatible to various platforms. In addition to that, we had to
find a solution for the automated provisioning of the process-
ing services as well as the components of our architecture to
the nodes in the cloud. After testing several tools (Puppet®,
Chet”, etc.) we decided to use Ansible® which is a lightweight
open-source solution that is able to execute provisioning scripts
facilitated by a role-based node management framework.

One of the major challenges was the definition of a map-
ping from terms in the DSL to processing services as described
in section 9.2. Our aim was to decouple the workflow language
from the actual execution in order to be able to change or re-
place either one without affecting the other. In other words we
wanted to be able to execute the same workflows on different
cloud infrastructures. Additionally, it should be possible to re-
place the DSL (if necessary) without requiring us to change the
processing services. The rule-based approach that we have cho-
sen allows us to dynamically change the mapping and to adapt
the system to different use cases and scenarios.

One problem that is yet to be solved is the efficient schedul-
ing of geospatial processes in the cloud. The production rules
the job manager uses to decide on which node a service should
be executed under certain circumstances are in our opinion key
to solve this issue. They allow the system to be configured and
adapted to various platforms and use cases. However, in order
to execute the workflow as efficiently as possible and to make
best use of available resources, it is often hard to decide in ad-
vance on which node and on how many nodes processing ser-
vices should be installed. In a typical cloud environment there
is very little information about the performance of each node.
Even though the number of CPU cores and the available main
memory is known, the cloud infrastructure provider may assign
physical resources dynamically amongst a number of applica-
tions running on the same cloud. Processing time of the same
workflow may therefore vary between multiple runs. In addi-
tion to that, although there is information about the performance
of processing services (e.g. their order of complexity) it is still
hard to tell in advance how the algorithms perform on a specific
hardware or platform.

Since the job manager uses production rules for its deci-
sions we may be able to let it learn from previous workflow
executions. The production rule base could be extended dy-
namically during runtime and so the job manager’s assumptions

http://puppetlabs.com
Thttps://www.chef.io
8http://www.ansible.com

could be underpinned by experience from the past. However,
we have not yet implemented this approach and so the issue
remains subject to further research.

12. Security considerations

In order to protect the rights of owners of geospatial data
stored and processed by our system various security issues have
to be considered. This section gives an overview over the most
important aspects and how they can be addressed with our ar-
chitecture.

Data storage. A typical way to protect data against unau-
thorised access is data encryption. As described in section 7
we use the Hadoop file system (HDFS) as the means to store
geospatial data redundantly and in a distributed manner in the
cloud. HDFS does not offer data encryption out of the box.
Such a feature would have to be implemented on top of the
file system as a separate layer or, since HDFS is open source,
data encryption could be implemented directly into the file sys-
tem. Note that in a private and trusted cloud environment data
encryption typically has no benefits, but imposes performance
and development overhead instead.

Data transfer. In a distributed system data is typically
transferred between multiple nodes. Oftentimes it even has to
leave a data centre and has to be copied to another one. It is
important that data is encrypted before it is transferred. As
HDFS is our main communication channel, we have to make
sure all communication channels used by the HDFS name node
and data nodes are secured. This can be enabled in the HDFS
configuration file.

Data upload and download. The data access service (see
section 8) is a REST service that enables access to the data
stored in the distributed file system through a specified HTTP
interface (either from a client application or through the Web
Browser). Access to this service is secured through HTTPS us-
ing SSL/TLS encryption.

Authentication. We use single sign-on authentication facil-
itated by CAS (Central Authentication Service), an open source
framework that allows users to authenticate using common cre-
dentials for various components of the system. In our archi-
tecture user credentials are stored in a distributed MongoDB
database. Passwords are never stored as clear text but hashed
using the Berypt hash algorithm which is typically considered
very secure [39].

Authorisation. While authentication makes sure the right
person accesses the system, it does not protect data stored in
the distributed file system against unauthorised access. HDFS
implements a sophisticated permission model for files and di-
rectories that is very similar to the one found in the UNIX op-
erating system. Each file is associated with an owner and a
group. Separate read/write permission for each file and direc-
tory can be assigned to the owner, the group, or all other users.
This allows users with the right permissions to protect their files
against other users who are authenticated but not authorised to
access the data.

12

13. Evaluation

In the IQmulus project three showcases from the marine,
land, and urban domain have been defined consisting of eleven
use cases (i.e. processing workflows). In this section we will
present the results of applying our architecture to two of these
use cases coming from the urban and land domains.

The first workflow deals with individual tree extraction from
urban LMMS data (Land-based Mobile Mapping System). The
test data set used is a large point cloud split up into 339 files
with a total size of 176 GB. Each file has exactly 3 million
points (except for the last file which contains the remaining
points).

The workflow expressed in our domain-specific language is
very short and looks as follows:

with each PointCloud do
extract Trees
end

The interpreter maps the extract keyword to a process-
ing service performing multi-object classification for 3D point
clouds. The service depends on the results of another one calcu-
lating the Point Cloud Dimensionality (PCD). The result of the
multi-object classification is a new point cloud annotated with
labels indicating point classes.

The interpreter also maps the term Trees to a service iden-
tifying individual trees based on a classified point cloud. It gen-
erates the abstract workflow and passes it to the Job Manager.
The Job Manager searches the distributed file system for point
clouds (term each PointCloud in the DSL). It then calculates
the dependencies between the involved services and executes
them in parallel on multiple computing nodes.

Note that the DSL script is very short but powerful. The
reason for this is two-fold. First of all, the rules used by the job
manager define dependencies, so even though only one task has
been specified in the workflow, the job manager will execute
three services. Second, the services have default parameters not
specified in the DSL script. Of course, experienced users may
override these parameters (see the second example below).

While running this workflow we found the data access ser-
vice to be very valuable to upload large data to the distributed
file system. Using a web-based user interface is certainly easier
than Hadoop’s command line tools.

Concerning processing performance we were able to repro-
duce the results we achieved on a high-end workstation. This
machine had a similar configuration as a virtual node in our
cloud. Each file took about six minutes to process. This sug-
gests that virtualisation overhead in the cloud is negligible—
an observation also reported by Malawski et al. [40]. Never-
theless, compared to the single machine, the cloud performed
very well because we were able to distribute services to mul-
tiple nodes and therefore process many tiles at once. Scalabil-
ity in this scenario is theoretically linear which means that the
more computing nodes involved the better the performance. In
practice, however, it depends on the capabilities and capacity of
the underlying infrastructure and hardware. The number of real
virtual machine hypervisors and CPU cores as well as the avail-
able amount of physical memory limit the virtual computation

power. In our experiment we used ten virtual machines running
on six hypervisors with a total number of 96 cpu cores, and we
didn’t notice any significant performance degradation.

The second workflow that we used for evaluation deals with
flood and water detection in a wide area (i.e. on the level of a
country). The data under test is a set of pre-processed, geo-
referenced satellite images stored in GeoTIFF format. Before
they can be used in the actual processing the images need to be
enhanced in terms of contrast, saturation, etc. There are eight
images in total, each having a size of 250 MB.

The workflow as specified in the DSL workflow editor is as
follows:

with each SatelliteImage do

enhance image using {factor: 2.0,
offset: 0.0,
method: toaReflectancel}

detect FloodedAreas
end

The workflow employs three services. The term enhance in
the DSL script is mapped to a service performing radiometric
enhancements based on the given parameters. The term detect
maps to two services which firstly compute spectral indices on
the given satellite imagery and finally detect flooded areas and
waterlogging.

The example is executed in the same way as the first one.
The interpreter maps the terms in the DSL script to processing
services. The Job Manager looks for the requested imagery and
starts the processing services in parallel. This time it can make
use of the capabilities of Apache Hadoop as the algorithms are
implemented in MapReduce.

Again, the performance in the cloud is comparable to the
one on a high-end workstation with a similar configuration.
The three services take about 3 to 4 minutes to process one file.
However, the cloud allows all files to be processed at once on
8 different nodes in about 4 minutes which is not possible on a
local machine.

There are some issues to be considered though. First of
all, debugging the processing algorithms in the cloud is rather
tedious. Developers have to build services, upload them to the
cloud (i.e. register them with the Job Manager), run the test,
download the log files to see what has happened, fix the bug,
and then start all over again. This can be quite time-consuming
but while the services become more mature they don’t have to
be updated as often anymore.

14. Conclusion

In this paper we presented a modular architecture for pro-
cessing of Big Geo Data in the cloud. We described our over-
all architecture, its components and how they work with each
other. We also described requirements for systems that process
Big Geo Data and how we address them in our architecture.

Compared to previous work we did not focus on only one
specific programming paradigm such as MapReduce for geospa-
tial processing. Our architecture is modular and allows for ex-
ecuting a wide range of processing services (even legacy ones).

13

This makes the system suitable for many applications. In addi-
tion to that, we did not focus on a certain cloud infrastructure.
Instead our solution makes use of a rule-based system that al-
lows us to control the execution of workflows on multiple plat-
forms.

Further flexibility is given by the fact that our architecture
allows domain experts to control the processing of Big Geo
Data through a domain-specific language. This makes the cloud
and therefore its processing power available to users from the
geospatial domain without requiring them to have a deep knowl-
edge of the infrastructure and its technical details.

The evaluation results presented in section 13 suggest that
our architecture works well. The DSL is very powerful and
allows domain experts to control processing in the cloud with
only a couple of commands. The performance gain of using
distributed processing is huge compared to a single high-end
workstation.

The architecture has been implemented on a prototypical
level which allowed us to perform the evaluation. In the future
we will further develop our system and perform more studies.
For example, we will investigate how the presented architecture
can be applied to domains other than geospatial processing. We
assume by changing the DSL, the rules, and the metadata for
services and data we can support other applications as well.

Acknowledgements

Research presented here is carried out within the project
“IQmulus” (A High-volume Fusion and Analysis Platform for
Geospatial Point Clouds, Coverages and Volumetric Data Sets)
funded from the 7th Framework Programme of the European
Commission, call identifier FP7-ICT-2011-8, under the grant
agreement no. 318787, started in November 2012. We would
like to thank Mathieu Brédif and Binh Nguyen Thai for their
valuable comments and input to the evaluation section.

References

[1] Krimer M, Kehlenbach A. Interactive, GPU-Based Urban Growth Simu-
lation for Agile Urban Policy Modelling. In: Rekdalsbakken W, Bye R,
Zhang H, editors. Proceedings of the 27th European Conference on Mod-
elling and Simulation (ECMS). Alesund, Norway: European Council for
Modelling and Simulation; 2013, p. 75-81.

Cossu R, Di Giulio C, Brito F, Petcu D. Cloud computing for earth obser-
vation. In: Kyriazis D, Voulodimos A, Gogouvitis SV, Varvarigou T, ed-
itors. Data Intensive Storage Services for Cloud Environments; chap. 12.
IGI Global. ISBN 9781466639348; 2013, p. 166-91. doi:10.4018/
978-1-4666-3934-8.

LiJ, Humphrey M, Agarwal D, Jackson K, van Ingen C, Ryu Y. eScience
in the cloud: A MODIS satellite data reprojection and reduction pipeline
in the Windows Azure platform. In: 2010 IEEE International Symposium
on Parallel Distributed Processing (IPDPS). 2010, p. 1-10. doi:10.1109/
IPDPS.2010.5470418.

Giuliani G, Nativi S, Lehmann A, Ray N. {WPS} mediation: An approach
to process geospatial data on different computing backends. Computers &
Geosciences 2012;47(0):20 — 33. doi:http://dx.doi.org/10.1016/
j.cageo.2011.10.009; towards a Geoprocessing Web.

Qazi N, Smyth D, McCarthy T. Towards a GIS-Based Decision Support
System on the Amazon Cloud for the Modelling of Domestic Wastewater
Treatment Solutions in Wexford, Ireland. In: 2013 UKSim 15th Inter-
national Conference on Computer Modelling and Simulation (UKSim).
2013, p. 236-40. doi:10.1109/UKSim.2013.62.

[2]

[3]

[4]

[3]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

[18]

[19]

(20]

(21]

[22]
[23]
[24]
(25]
(26]

(27]

Kuo MHA. Opportunities and challenges of cloud computing to improve
health care services. J Med Internet Res 2011;13(3):e67. doi:10.2196/
jmir.1867.

Batty M. Big data, smart cities and city planning. Dialogues in Human
Geography 2013;3(3):274-9. doi:10.1177/2043820613513390.

Khan Z, Kiani SL. A cloud-based architecture for citizen services in
smart cities. In: Proceedings of the 2012 IEEE/ACM Fifth International
Conference on Utility and Cloud Computing. UCC ’12; Washington, DC,
USA: IEEE Computer Society. ISBN 978-0-7695-4862-3; 2012, p. 315—
20. doi:10.1109/UCC.2012.43.

Khan Z, Anjum A, Kiani SL. Cloud based big data analytics for smart
future cities. In: Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing. UCC ’13; Washington, DC,
USA: IEEE Computer Society. ISBN 978-0-7695-5152-4; 2013, p. 381—
6. doi:10.1109/UCC.2013.77.

Mell P, Grance T. The NIST Definition of Cloud Computing. Tech.
Rep. 800-145; National Institute of Standards and Technology (NIST);
Gaithersburg, MD; 2011.

Agarwal D, Prasad S. Lessons Learnt from the Development of GIS Ap-
plication on Azure Cloud Platform. In: 2012 IEEE 5th International Con-
ference on Cloud Computing (CLOUD). 2012, p. 352-9. doi:10.1109/
CLOUD.2012.140.

Malawski M, Gubata T, Bubak M. Component-based approach for
programming and running scientific applications on grids and clouds.
International Journal of High Performance Computing Applications
2012;26(3):275-95. doi:10.1177/1094342011422924.

Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM 2008;51(1):1-13. doi:10.1145/
1327452.1327492.

Haller P, Odersky M. Scala Actors: Unifying thread-based and event-
based programming. Theoretical Computer Science 2009;410(2-3):202
—20. doichttp://dx.doi.org/10.1016/j.tcs.2008.09.019.
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: clus-
ter computing with working sets. In: Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing. 2010, p. 10.

Eldawy A, Li Y, Mokbel MF, Janardan R. CG_Hadoop: Computational
Geometry in MapReduce. In: 21st ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems (ACM SIGSPA-
TIAL GIS 2013). 2013,.

Ajiy A, Sun X, Vo H, Liu Q, Lee R, Zhang X, et al. Demonstration
of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.
In: 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL GIS 2013). 2013,.
Xin R, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I. Shark:
SQL and Rich Analytics at Scale. In: Proceedings of the ACM SIG-
MOD/PODS Conference. 2013,.

Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, et al.
Pegasus: a workflow management system for science automation. Future
Generation Computer Systems 2014;.

Whitley KN. Visual programming languages and the empirical evidence
for and against. Journal of Visual Languages & Computing 1997;8(1):109
—42. doichttp://dx.doi.org/10.1006/jvlc.1996.0030.
Rosenberg D, Scott K. Use Case Driven Object Modeling with UML:
A Practical Approach. Addison-Wesley Professional; 1999. ISBN
0201432897.

Belényesi M, D. Krist6f (eds.) . IQmulus public project deliverable
D1.2.1 — Initial User Requirements. Tech. Rep.; 2014.

Belényesi M, D. Krist6f (eds.) . IQmulus public project deliverable
D1.2.2 — Consolidated User Requirements. Tech. Rep.; 2014.

Belényesi M, D. Krist6f (eds.) . IQmulus public project deliverable
D1.2.3 — Revised User Requirements. Tech. Rep.; 2014.

Kriamer M, KieBlich N, Spagnulo M. IQmulus public project deliverable
D2.3.1 — Architecture Design — baseline version. Tech. Rep.; 2014.
Beyer MA, Laney D. The Importance of 'Big Data’: A Definition. Tech.
Rep.; Gartner; 2012.

Kramer M. Controlling the processing of smart city data in the cloud with
domain-specific languages. In: Proceedings of the 7th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing (UCC2014), the 1st
International Workshop on Smart City Clouds: Technologies, Systems
and Applications. 2014,To be published.

14

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[38]
[39]

[40]

Khan ZA, Ludlow D, McClatchey R, Anjum A. An architecture for inte-
grated intelligence in urban management using cloud computing. CoRR
2012;abs/1202.5483.

Zdun U, Capilla R, Tran H, Zimmermann O. Sustainable architectural
design decisions. IEEE Software 2013;30(6):46-53. doi:10.1109/MS.
2013.97.

Breivold HP, Crnkovic I, Larsson M. A systematic review of software
architecture evolution research. Information and Software Technology
2012;54(1):16-40.

Wong WE, Christensen HB, Hansen KM. An empirical investiga-
tion of architectural prototyping. Journal of Systems and Software
2010;83(1):133-42.

Bosch J. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. Addison-Wesley Professional; 2000. ISBN
0201674947.

Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A
Not-so-foreign Language for Data Processing. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’08; New York, NY, USA: ACM. ISBN 978-1-60558-102-6;
2008, p. 1099-110. doi:10.1145/1376616.1376726.

A. Eldawy and M. Mokbel . Pigeon: A Spatial MapReduce Language. In:
Proceedings of the IEEE International Conference on Data Engineering
(ICDE). 2014,.

Depardon B, Mahec GL, Séguin C. Analysis of six distributed file sys-
tems. Tech. Rep.; HAL; 2014.

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Clus-
ter Computing with Working Sets. In: Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing. Berkeley, CA, USA:
USENIX Association; 2010,.

Fielding RT. Architectural styles and the design of network-based
software architectures. Ph.D. thesis; University of California; 2000.
doi:10.1.1.91.2433.

Gasevic D, Djuric D, Devedzic V. Model Driven Engineering and Ontol-
ogy Development. 2 ed.; Springer; 2009. ISBN 978-3-642-00282-3.
Provos N, Mazires D. A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track. 1999, p. 81-91.
Malawski M, Meizner J, Bubak M, Gepner P. Component approach
to computational applications on clouds. Procedia Computer Science
2011;4(0):432 —41. doichttp://dx.doi.org/10.1016/j.procs.
2011.04.045; proceedings of the International Conference on Compu-
tational Science, {ICCS} 2011.

